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Abstract

This paper presents the Multi-ID (Multiple Inputs and
Devices) Dataset, a collection of keystroke, mouse, and
touch dynamics, obtained from over 30 participants en-
gaged in diverse tasks on both desktop computers and
mobile phones. Multi-ID serves as a valuable asset for
advancing collaborative, multi-device scenarios, laying
the groundwork for the development of systems that can
adapt to diverse user preferences and device usage pat-
terns. One application of this dataset lies in security-
focused applications spanning multiple devices. In par-
ticular, in-depth analyses of keystrokes, touch gestures,
and mouse dynamics across different devices, as facili-
tated by Multi-ID, could inform the development of ro-
bust cross-device user authentication systems. This is
particularly crucial in collaborative settings where par-
ticipants frequently transition between devices. How-
ever, the challenge of cross-device authentication is sub-
stantial due to intra-person variation in input dynamics
across devices, even when inputting the same phrase or
gesture. To underscore this challenge and showcase the
utility of Multi-ID, we conducted user authentication
experiments utilizing three classifiers and various train–
test scenarios involving fixed and free-form keystroke
data. These experiments encompass within- and across-
task and device scenarios, revealing notably low equal
error rates, reflecting the very challenging yet practical
scenario of cross-device user authentication.

1 Introduction

This paper presents the Multi-ID (Multiple Inputs and
Devices) Dataset, an on-going collection of keystroke,
mouse, and touch dynamics, collected thus far from
over 30 research participants from both a desktop com-
puter and a mobile phone as they performed various
tasks. The Multi-ID dataset holds immense potential for
enhancing collaborative scenarios. For example, col-
laborative systems that integrate both mobile devices
and desktop computers could leverage insights from the
Multi-ID dataset to inform the development of adaptive
interfaces to ensure seamless transitions and consistent

user experiences across devices [26]. Further, Multi-ID
could play a crucial role in shaping the design of col-
laborative applications in specialized areas like virtual
collaboration, where participants interact through vari-
ous devices [20, 24], among other applications.

Another significant application of the Multi-ID
dataset is its potential as a valuable resource for improv-
ing security mechanisms. Specifically, Multi-ID could
contribute to the creation of intelligent authentication
mechanisms that prioritize both security and user con-
venience, particularly in settings where users frequently
switch between devices, by aiding understanding of the
unique input patterns associated with each user and de-
vice combination.

However, user authentication across devices is chal-
lenging, particularly considering the dynamics captured
in the Multi-ID dataset. For instance, previous stud-
ies have investigated the influence of various devices
on keystroke-based authentication systems. Acien et al.
[1] employed stacked Long Short-Term Memory net-
works to authenticate 168,000 subjects based on 136
million keystrokes collected from both physical and
touchscreen keyboards. Their findings revealed a sig-
nificant increase (21.4%) in equal error rates (EERs)
— the point at which the false acceptance rate (FAR)
equals the false rejection rate (FRR), providing a bal-
anced assessment of the system’s performance — when
training on the physical keyboard dataset and testing on
the touchscreen keyboard dataset, compared to train-
ing and testing on the same physical keyboard dataset
(2.2%). Similarly, Alsuhibany and Almuqbil [2] inves-
tigated the persistence of typing patterns across differ-
ent devices, observing an increase in EERs from 0%
(training and testing on the same device) to 6% (train-
ing and testing on different devices). Further, several
factors are known to impact the performance of biomet-
ric systems using input dynamics, like keystroke, touch,
and mouse dynamics, for authentication. For instance,
keystroke time intervals are influenced by users’ ages
[33, 13] and by the typing task at hand [21], while touch
gestures are known to differ for the same user across
different mobile applications [12]. On the other hand,
input dynamics are common identifiers for user authen-
tication on mobile devices, laptops, and workstations
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(a) Desktop setup (b) Phone setup

Figure 1: Data collection setup.

[18, 16, 8, 19, 11, 9, 35, 22, 7, 33]. Consequently, the
design of cross-device and multi-input-based authenti-
cation systems is challenging yet warrants increased at-
tention.

2 The Multi-ID Dataset
The Multi-ID Dataset includes input dynamics collected
from research participants aged 6 and older, with 3 indi-
viduals aged 17 and under, 18 individuals aged 18 to 29,
4 individuals aged 30 to 49, and 7 individuals aged 50
or older. At the time of this writing, the dataset includes
data from 32 participants (13 female and 19 male; 12
Asian, 11 White, 4 Middle Eastern or North African, 3
Black or African American, and 2 Hispanic, Latino, or
of Spanish origin). Additionally, there are 21 iOS users
and 11 Android users.

Before participating in the study, individuals undergo
an initial virtual meeting where a researcher explains
the study’s purpose and details, and participants read
and sign a consent form. Once participants agree to
take part in this study, they schedule a time to come into
the lab. During their first session, participants complete
a demographic form. For children under 18 years old,
demographic information is provided by their accompa-
nying guardian.

Participants attend three separate sessions in the lab,
each involving tasks performed on a Lenovo Think-
Centre M710 workstation and a OnePlus Nord N10 5G
smartphone. In each session, various input dynamics
are collected transparently. This includes fixed (par-
ticipants type a provided phrase) and free-form (par-
ticipants enter a phrase of their choice) keystroke dy-
namics, directed (participants navigate using the mouse
based on provided tasks) and free-form (participants use
the mouse as they please) mouse dynamics, as well as
touch dynamics. The data collection setup is illustrated
in Figure 1, and screenshots for Tasks 2, 3, and 4 can be
found in Figure 2, as described below:

Task 1: Essay Compose a provided essay (approxi-
mately 500 words for adults and 150 words for
children) on the desktop computer. Children en-
gage with a shorter, child-friendly story instead of
a lengthy essay for better participation and to mini-
mize fatigue. Collected desktop modalities include

fixed keystroke and free-form mouse dynamics.

Task 2: Password Entry Enter three passwords
five times each on both the desktop and
smartphone (GmxPV3L, Nv5PHS!8kP8,
and jxK&5sDpwfE+U for adults, and
schoolRocks, g@me&play, and GmxPV3L
for children). These passwords are designed to
vary in difficulty, incorporating special characters,
numbers, and a mix of lower and uppercase letters.
Desktop modalities include fixed keystroke and
free-form mouse dynamics, while phone modal-
ities include fixed keystroke and free-form touch
dynamics.

Task 3: Recipe Search Search the web for a recipe of
the participant’s choice on the desktop. Collected
desktop modalities encompass free-form keystroke
and both directed and free-form mouse dynamics.
Participants can opt to use a provided website for
a guided search (directed mouse) or freely explore
the internet (free-form mouse).

Task 4: Mock Credentials Generate mock username
and password combinations as if setting up per-
sonal email, utility, banking, work-hosted email,
and school-hosted email accounts on both the
workstation and smartphone. Mock accounts
for children include a streaming service (e.g.,
YouTube), a chat account for communication with
friends, a banking or money-saving account, a
gaming account, and a school account. Collected
desktop modalities involve free-form keystroke
and mouse dynamics, while phone modalities en-
compass free-form keystroke and touch dynamics.

Task 5: Text Messaging Engage in a brief conversa-
tion with a member of the research team via phone,
simulating text messaging. The exchange is tai-
lored to the participant’s age group, addressing
their study experience, covering topics such as:

1. Identifying the easiest and hardest tasks dur-
ing the study.

2. Inquiring about their typical authentication
methods on their own device.

3. Exploring reasons for not using any authenti-
cation method, including a password.

4. Understanding the participant’s emotions
when their chosen authentication method
fails.

5. Gauging their opinion on continuous authen-
tication approaches, such as those based on
typing patterns.

Note that this task captures both input dynamics
and the chat itself, and both components are incor-
porated into the Multi-ID Dataset. Phone modali-
ties collected encompass free-form keystroke and
touch dynamics.
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To enhance participation across all three sessions, we
offer flexible scheduling options for participants, allow-
ing them to coordinate sessions based on their availabil-
ity. Instead of scheduling sessions on set days, we send
reminder emails after each session, prompting partici-
pants to schedule the next one. As a result, the time
between sessions varies, averaging 13 days. The aver-
age duration of each session is 22, 19, and 19 minutes,
respectively, contributing to approximately 32 hours of
data thus far. This data collection has received Hu-
man Subjects approval from the University of South
Florida’s Institutional Review Board (STUDY002291).
Participants receive compensation in the form of a $35
e-gift card per completed session.

To our knowledge, the Multi-ID Dataset is only one
of two (in addition to the BB-MAS dataset [5]) to con-
sist of three different input dynamics, and the only to in-
clude fixed and free-form keystroke tasks, directed and
free-form mouse tasks, and touch gestures, each col-
lected across three sessions per subject. Table 1 pro-
vides a summary of comparable datasets that include
keystroke, touch, and mouse data. While these datasets
include various input dynamics, only one [5] includes
all three input dynamics, while the others do not cover
across device or task scenarios, have limited demo-
graphic details, or consider a single session or multiple
sessions within the same day.

3 Authentication Experiments

We explored four train/test scenarios to evaluate authen-
tication performance using the Multi-ID dataset across
sessions, devices, and tasks to demonstrate its use for
assessing multi-input user authentication, including:

1. Training and testing using data collected on a sin-
gle device within a single task.

2. Training and testing using data collected on a sin-
gle device from different tasks.

3. Training and testing using data collected on differ-
ent devices within a single task.

4. Training and testing using data collected on differ-
ent devices from different tasks.

In each of these scenarios, the training data consisted
of a single session, while the testing data consisted of a
future session (i.e., session 1 as training data and session
2 as testing data, session 2 and 3 as training and testing
data, respectively, and session 1 and 3 as training and
testing data, respectively).

3.1 Methodology

We extracted keystroke dynamic features from data col-
lected within the Multi-ID Dataset Tasks 2 and 4; these
tasks include desktop and phone data that reflect identi-
cal activities across both devices. We extracted features
common in other keystroke dynamic-based approaches
[4], including

1. Press-to-Press: Time between pressing the first
key and pressing the next key.

2. Press-to-Release: Time between pressing the first
key and releasing the same key.

3. Release-to-Press: Time between releasing the first
key and pressing the next key.

4. Release-to-Release: Time between releasing the
first key and releasing the next key.

5. Press-to-Release: Time between pressing the first
key and releasing the next key.

We trained three different machine learning classifiers
using these features, including a support vector machine
(SVM), decision tree (DT), and a logistic regression
(LR) classifier per participant using a one-versus-rest
approach to conduct user authentication experiments.
Each classifier was tuned using a grid search (SVM: ker-
nel: [linear, rbf, poly], C: [1, 10], gamma: [auto]; DT:
max depth: [1, 2, 3, 4], criterion: [gini, entropy]; and
LR: penalty: [l1, l2, elasticnet, None], solver: [liblinear,
newton-cholesky], C: [1, 10]).

3.2 Results

Figure 3 plots the range of EERs across all devices and
tasks. In this figure, the x-axis indicates the training and
testing set, where X/Y indicates the training (X) data
and testing (Y) data, D indicates data extracted from
the desktop, P indicates data extracted from the phone,
and T2 and T4 indicate Task 2 and Task 4, respectively.
Here, we briefly summarize overall findings to elucidate
open challenges that this dataset might help address.

Training with Desktop/Fixed The first subplot
shows the range of EERs achieved when training on
data gathered during Task 2 on the desktop (D-T2).
When testing with D-T2, illustrating a same device,
same task train/test scenario, we find that the EER dis-
tribution exhibits lower variance with a slightly lower
median compared to other testing scenarios. On the
other hand, the largest median EER value is observed
in the different device, same task scenario (i.e., D-T2 vs
P-T2), although the variance in EER values is smallest.
Notably, the largest range of EER values is observed in
the most challenging scenario of different device, dif-
ferent task (i.e., D-T2 vs P-T4).

Training with Phone/Fixed When training authenti-
cation systems on data collected during Task 2 on the
phone, we found all EER distributions tightly clustered.
This could suggest that the matching scores between en-
rolled and query features are generally the same, de-
spite the test set. However, because most of these EERs
range around 0.50, these results also indicate that our
particular experimental setup leads to consistently pro-
ducing false accept and false reject rates that show 50%
of users are either falsely authenticated or falsely re-
jected. This observation contrasts other training scenar-
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(a) Task 2 - Children (Phone) (b) Task 3 (Desktop)

(c) Task 4 - Adults (Desktop) (d) Task 4 - Children (Workstation)

Figure 2: Screenshots of input screens used in our data collection procedures for Tasks 2, 3, and 4.

Table 1: Comparable publicly available datasets of input dynamics. The Across Devices column indicates if the
dataset contains keystrokes (note that touch and mouse are specific to certain devices, while keystroke data can be
collected from multiple devices) collected from full physical keyboards (such as desktop and laptop keyboards)
and touch-based keyboards (such as those on mobile phones and tablets). The Demographics column indicates
if the dataset includes ethnicity, gender, and age of its participants. An asterick indicates datasets with additional
modalities beyond keystroke, touch, and mouse dynamics.

Dataset Modalities Subjects No. of Sessions Across Devices Demographics

BB-MAS* [6] Fixed keystroke, free-form keystroke, touch, free-form
mouse

117 2 Yes Yes

HMOG* [30] Free-form keystrokes, touch 100 8 (same day) No No

BrainRun* [25] Touch 2,218 1 No Yes

Touchalytics [14] Touch 41 1 (optional follow-up session) No No

LTU Touch [28] Touch 190 2 No No

CU Mobile I & II* [27] Fixed keystroke, free-form keystroke, touch 88 8 (same day) No No

UB [31] Fixed keystroke, free-form keystroke, fixed and free form
mouse

157 3 No Yes

CMU Keystroke [17] Fixed Keystrokes 51 8 No Yes

GREYC Keystroke [15] Fixed Keystrokes 113 5 No Yes

Soft Biometrics Database [32] Fixed Keystrokes 120 1 No Yes

Multi-K [34] Free-form Keystrokes 86 1 No No

Clarkson II [23] Free-form Keystrokes, Free-form mouse 113 Longitudinal (2.5 Years) No No

Aalto [10] Fixed Keystrokes 168,000 1 No Yes

Balabit Mouse Challenge [29] Free-form Mouse 10 1 No No

DFL [3] Free-form Mouse 21 1 No No

Multi-ID Fixed keystroke, free-form keystroke, directed mouse,
free-form mouse, touch

30+ 3 Yes Yes

ios, where some EERs are much lower (P-T4/P-T4) or
have a greater range (D-T2/P-T4).

Training with Desktop/Free-form It is interesting to
find contrasting ranges of EERs associated with train-
ing an authentication system using free-form keystroke
dynamics collected from the desktop, particularly when
compared to training with fixed keystroke dynamics
from a desktop (e.g., D-T2/P-T4 vs D-T4/P-T4). Such
differences highlight variations in typing patterns de-
pending on how the typist is instructed to provide in-
put. However, the amount of variance in EERs is rel-

atively consistent with the Desktop/Fixed training sce-
nario, where, besides X/P-T4, the range of EER values
is small. Thus, we suspect that while the task impacts
one’s typing dynamics, the task used for testing also
might lead to some expected range of accuracy assum-
ing the training device and task is the same.

Training with Phone/Free-form When using data
collected during Task 4 from the phone, we found the
lowest EER median for the same device, same task sce-
nario (i.e., P-T4/P-T4), in addition to the same device,
different task scenario (i.e., P-T4/P-T2). There is a
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sharp increase in EERs (from approximately 0.20-0.23
to 0.40-0.50) when changing the test set to data col-
lected from a desktop. We note that this observation
was not as prominent when training on data collected
from the desktop and testing on data collected from the
phone.

Overall, this small study demonstrates the impact of
training on the same versus different devices and the
implications of performing authentication tasks on the
same versus different tasks. Notably, when training and
testing occur on the same device and task, the EER dis-
tribution exhibits lower variance with a slightly lower
median. However, the challenge arises when dealing
with different devices and tasks, leading to increased
EER values and wider ranges. This underscores the
importance of understanding the dynamics of authen-
tication across various scenarios. The introduction of
the Multi-ID Dataset emerges as a promising solution
to address these and other challenges. For instance,
promising avenues of research facilitated by the Multi-
ID Dataset might include

Device-Agnostic Authentication Training authentica-
tion models using data from one device and test-
ing on data collected from another device, investi-
gating the extent to which models can generalize
across different devices, identifying potential chal-
lenges and opportunities for device-agnostic au-
thentication.

Task-Dependent Authentication Examining authen-
tication performance across different tasks within
the same device and across devices, assessing the
impact of task-specific behaviors on authentication
accuracy and exploring whether certain tasks con-
tribute more to authentication challenges.

Keystroke Dynamics Exploration Analyzing fixed
and free-form keystroke dynamics separately,
understanding how the choice of input (provided
phrase vs. user’s choice) influences authentication
accuracy.

Mouse and Touch Dynamics Investigation
Investigating correlations between mouse and
touch dynamics.

Multi-Modal Fusion Approaches Develop multi-
modal authentication models by fusing data from
keystrokes, mouse movements, and touch dy-
namics, evaluating the effectiveness of combining
multiple input modalities in enhancing overall
authentication accuracy and resiliency to device
and task variations.

By conducting these experiments, researchers can
gain deeper insights into the complexities of multi-
input, cross-device, and cross-task user authentication,

paving the way for more robust and adaptable authen-
tication systems in real-world settings. Further, find-
ings from these experiments can significantly enhance
collaborative systems or environments by informing the
development of user authentication protocols that seam-
lessly accommodate diverse devices and tasks, fostering
a user-friendly and adaptable collaborative ecosystem.
Incorporating insights from multi-input analyses can
lead to authentication systems that intelligently adapt
to users’ behaviors across devices and tasks, promoting
a secure and efficient collaborative environment where
users can seamlessly interact and collaborate without
unnecessary authentication hindrances.

4 Conclusion

This article presents the initial version of the Multi-ID
Dataset, which includes keystroke, touch, and mouse
dynamics from both a workstation and a mobile phone,
encompassing free-form and fixed text input and web
browsing. Initial experiments demonstrate the potential
of this dataset to not only expose real-world security
challenges in various within- and across-tasks and de-
vice scenarios, but to also help facilitate the resolution
of such challenges by, for example, the development of
device-agnostic or task-dependent authentication mod-
els.

Importantly, the Multi-ID Dataset presents a wealth
of opportunities for exploration and advancement
across various domains. Beyond its implications
for user authentication and collaborative systems, re-
searchers can leverage this dataset for human-computer
interaction studies, offering insights into user prefer-
ences and interactions and aiding in the design of more
intuitive and user-friendly interfaces. Additionally, the
dataset’s cross-device and cross-task nature makes it
valuable for understanding user behaviors in diverse
contexts, potentially informing the development of per-
sonalized computing experiences. Its applications could
also extend to fields such as accessibility, where insights
into user interactions can contribute to designing inclu-
sive technologies. Overall, the Multi-ID Dataset serves
as a versatile tool for multidisciplinary research, en-
compassing human-computer interaction, personalized
computing, the CSCW community, accessibility, and
beyond.
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Figure 3: Range of EERs across all devices and tasks. The x-axis indicates the training and testing set, where X/Y
indicates the training (X) data and testing (Y) data, D indicates data extracted from the desktop, P indicates data
extracted from the phone, and T2 and T4 indicate Task 2 and Task 4, respectively. Each plot’s title provides the
training data.
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